[SQA] 1. (*a*) Roadmakers look along the tops of a set of T-rods to ensure that straight sections of road are being created. Relative to suitable axes the top left corners of the T-rods are the points A(-8, -10, -2), B(-2, -1, 1) and C(6, 11, 5).

Determine whether or not the section of road ABC has been built in a straight line.

(*b*) A further T-rod is placed such that D has coordinates (1, -4, 4).

Show that DB is perpendicular to AB.

3

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
(<i>a</i>)	3	С	CN	G23	the road ABC is straight	2001 P1 Q3
(<i>b</i>)	3	С	CN	G27, G17	proof	
•1 •2 •3 •4 •5 •6	ic: inte ic: con ic: inte ss: stat ic: con	erpret ve erpret m aplete pr erpret ve e requir aplete pr	ector (e. ultiple o roof ector (i.e ement f roof	g. \overrightarrow{AB}) of vector e. \overrightarrow{BD}) for perpend.	• ¹ e.g. $\overrightarrow{AB} = \begin{pmatrix} 6\\ 9\\ 3 \end{pmatrix}$ • ² e.g. $\overrightarrow{BC} = \begin{pmatrix} 8\\ 12\\ 4 \end{pmatrix}$ $\overrightarrow{AB} = 3 \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix}$ and $\overrightarrow{BC} = 4$ • ³ a common direction end common point exists, collinear • ⁴ $\overrightarrow{BD} = \begin{pmatrix} 3\\ -3\\ 3 \end{pmatrix}$ • ⁵ $\overrightarrow{AB}.\overrightarrow{BD} = 0$ • ⁶ $\overrightarrow{AB}.\overrightarrow{BD} = 18 - 27 + 9 = 0$ or • ⁵ $\overrightarrow{AB}.\overrightarrow{BD} = 18 - 27 + 9 = 0$	$= \frac{4}{3}\overrightarrow{AB} \text{ or}$ $= \frac{4}{3}\overrightarrow{AB} \text{ or}$ $= \binom{2}{3}$ $= 3$

[SQA] 2. (a) Show that the points L(-5, 6, -5), M(7, -2, -1) and N(10, -4, 0) are collinear.

(b) Find the ration in which M divides LN.

Part	Marks	Level	Calc.	Content		Answer	U3 OC1
<i>(a)</i>	4	С	CN	G23			1991 P1 Q7
(b)	1	С	CN	G25			
•1 $\overrightarrow{LM} = \begin{pmatrix} 12 \\ -8 \\ 4 \end{pmatrix}$ or equivalent combinations for (a)				r (a)	• ³ • ⁴	$\vec{LM} = 4 \vec{MN}$ vectors are parallel and have comm	non
• ² Å	$\vec{AN} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$				•5	4:1	

[SQA] 3. Relative to the top of a hill, three gliders have positions given by R(-1, -8, -2), S(2, -5, 4) and T(3, -4, 6). T Prove that R, S and T are collinear. S R

Part	Marks	Level	Calc.	Content		Answer	U3 OC1
	3	С	CN	G23			1994 P1 Q4
•1	$\vec{ST} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	or equiv	alent a	nd $\vec{RS} = \begin{pmatrix} 3\\ 3\\ 6 \end{pmatrix}$	or equiv	valent	
•2	$\vec{RS} = 3\vec{ST}$	or equiv	2				
•3	RS // S	T and S	is comm	on.			

Statistica .

4 1

[SQA] 4. Relative to a suitable set of axes, the tops of three chimneys have coordinates given by A(1, 3, 2), B(2, -1, 4) and C(4, -9, 8).
 Show that A, B and C are collinear.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1		
	3	С	CN	G23		1997 P1 Q2		
•1	$\vec{AB} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix}$)	•2	$\vec{BC} = \begin{pmatrix} 2 \\ -8 \\ 4 \end{pmatrix} \text{ AND } \vec{BC}$	$C = 2 \times \overrightarrow{AB}$			
	• ³ $\overrightarrow{AB} \mid \overrightarrow{BC} \And B$ is common hence A, B, C collinear							

[SQA] 5. Show that P(2,2,3), Q(4,4,1) and R(5,5,0) are collinear and find the ratio in which Q divides PR.

Part	Marks	Level	Calc.	Content	Answer		U3 OC1
	4	С	CN	G23, G25	\overrightarrow{QR} =	$\frac{1}{2}\overrightarrow{PQ}$,	1990 P1 Q4
					PQ:QR=2	:1	
•1	$\overrightarrow{PQ} = \begin{pmatrix} 2\\ 2\\ -2 \end{pmatrix}$	l	or	• ³ vectors p • ⁴ $PQ:QR =$	arallel and have 2:1	pt in common so	pts collinear
•2 ($\vec{QR} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$	$=\frac{1}{2}\vec{PQ}$	equivale	nt			

[SQA] 6. A is the point (2, -5, 6), B is (6, -3, 4) and C is (12, 0, 1). Show that A, B and C are collinear and determine the ratio in which B divides AC.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
	4	С	CN	G23, G25	2:3 or equivalent	1996 P1 Q6
•1	$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$	or AC	$= \begin{pmatrix} 10\\5\\-5 \end{pmatrix} o$	$r \overrightarrow{BC} = \begin{pmatrix} 6\\ 3\\ -3 \end{pmatrix}$	• ³ AB BC and B is p)int in common
•2	$\overrightarrow{AB} = 2 \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$	$\left(\right)$ and $\frac{1}{E}$	$\overrightarrow{BC} = 3 \begin{pmatrix} 2 \\ 1 \\ - \end{pmatrix}$) or equivalent	• ⁴ 2:3 (or equivalent e.g	. 1:1 <u>1</u>)

4

3

- [SQA] 7. D, E and F have coordinates (10, -8, -15), (1, -2, -3) and (-2, 0, 1) respectively.
 - (*a*) (i) Show that D, E and F are collinear.
 - (ii) Find the ratio in which E divides DF.
 - (*b*) G has coordinates (k, 1, 0).

Given that DE is perpendicular to GE, find the value of *k*.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
(<i>a</i>)	4	С	CN	G23, G24	3:1	2009 P1 Q22
(<i>b</i>)	4	С	CN	G27	k = 7	
•1 •2 •3 •4 •5 •6 •7 •8	ss: use ic: con ic: stat ss: use ss: kno vectors pd: star pd: con	vector a npare tw nplete pr e ratio vector a ow scala et to solv nplete	approac ro vecto roof approac r produ re	h rs h uct = 0 for \perp	• ¹ $\overrightarrow{DE} = \begin{pmatrix} -9\\ 6\\ 12 \end{pmatrix}$ or $\overrightarrow{EF} = \begin{pmatrix} -9\\ 6\\ 12 \end{pmatrix}$ • ² 2nd column vector $\overrightarrow{(DE)} = 3\overrightarrow{EF}$ • ³ \overrightarrow{DE} and \overrightarrow{EF} have common common direction; hence are collinear • ⁴ 3 : 1 • ⁵ $\overrightarrow{GE} = \begin{pmatrix} 1-k\\ -3\\ -3 \end{pmatrix}$ • ⁶ $\overrightarrow{DE}.\overrightarrow{GE} = 0$ • ⁷ -9(1-k) + 6 × (-3) + 1 • ⁸ $k = 7$	$\begin{pmatrix} -3\\2\\4 \end{pmatrix}$ for and the point and D, E and $F2 \times (-3)$

4

[SQA] 8. ABCD is a quadrilateral with vertices A(4, -1, 3), B(8, 3, -1), C(0, 4, 4) and D(-4, 0, 8).

- (*a*) Find the coordinates of M, the midpoint of AB.
- (*b*) Find the coordinates of the point T, which divides CM in the ratio 2 : 1.
- (c) Show that B, T and D are collinear and find the ratio in which T divides BD.

Part	Marks	Level	Calc.	Content	Answer	U3 OC1
<i>(a)</i>	1	С	CN	G6, G25		1989 P2 Q2
(b)	3	С	CN	G25		
(<i>C</i>)	4	С	CN	G23, G25		
(a) (b)	• ¹ (6, 1, • ² e.g. • ³ $\vec{CT} =$ • ⁴ $T = 6$	1) $\vec{CM} = \begin{pmatrix} 6 \\ -3 \\ -3 \\ -3 \end{pmatrix}$ $= \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix}$ $(4 \ 2 \ 2)$	3	(c) • ⁵ e.g • ⁶ TÌ • ⁷ TI • ⁸ BT	$\vec{BT} = \begin{pmatrix} -4 \\ -1 \\ 3 \end{pmatrix}$ $\vec{D} = \begin{pmatrix} -8 \\ -2 \\ 6 \end{pmatrix} = 2 \times \vec{BT}$ $\vec{D} \text{ is parallel to BT, T is common p}$ $\vec{TTD} = 1:2$	oint so B, T, D collines

[END OF QUESTIONS]

1

3